Correlations of Structure with Binding Ability Involving Nine Hemicarcerand Hosts and Twenty-Four Guests ${ }^{1}$

Roger C. Helgeson, Carolyn B. Knobler, and Donald J. Cram*
Contribution from the Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California 90095

Received September 26, 1996. Revised Manuscript Received February 4, 1997^{\otimes}

Abstract

Hemicarcerands $\mathbf{1 - 9}$, composed by coupling through four $\mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{O}$ or four 1,3-($\left.\mathrm{OCH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ bridging units in different pair combinations of three tetrol bowls (varying spanners, $\mathrm{O}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{O}, n=1,2$, or 3), have been examined for their abilities to incarcerate a variety of organic guest compounds of widely differing structures. When the conformationally flexible tetrol bowl (spanners $=\mathrm{O}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{O}$) was coupled lip-to-lip to either of two rigid bowl units (spanners $=\mathrm{OCH}_{2} \mathrm{O}$ or $\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}$), the rigid units tended to impose their shapes on the mobile units in the resulting hosts (${ }^{1} \mathrm{H}$ NMR spectral and crystal structure evidence). Complexes were formed by heating to high temperatures host dissolved in a large excess of guest. High structural recognition in complexation was observed for the 1,3-($\left.\mathrm{OCH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$-bridged hosts to favor binding of 1,2-disubstituted as compared to 1,3- and 1,4-disubstituted benzenes as guests. Three new crystal structures of hemicarceplexes identical except for their spanner lengths are compared, and a fourth new structure allows comparison of identical hosts with different guests. Decomplexation rates are compared in some cases. Interesting new kinds of restricted rotations of guests with respect to hosts were observed. Three examples of trace impurities in guests being scavenged by the host were encountered.

The syntheses and characterizations of hemicarcerands $\mathbf{1 - 9}$ and their cavitand precursors $\mathbf{1 0 - 1 2}$ (Chart 1) are described elsewhere. ${ }^{2,3}$ Here we report the results of a survey of the binding properties of hosts $\mathbf{1 - 9}$ toward selected organic guests composed of between six and 13 non-hydrogen atoms. The sizes and shapes of guest candidates must be complementary enough to the host's portals and interiors so that constrictive and intrinsic binding ${ }^{4}$ taken together allow hemicarceplexes to be formed at high temperatures, yet the complexes must be stable enough at ambient temperature to be isolable and manipulable.

Hosts 1-6 all contain four 1,3-($\left.\mathrm{OCH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ groups that link the northern and southern hemispheres to one another (bridging groups), but differ in the lengths of the four $\mathrm{O}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{O}$ moieties (spanning groups) that maintain the general bowllike shape of each hemisphere. Notice that $\mathbf{1}$ contains only $\mathrm{OCH}_{2} \mathrm{O}, \mathbf{2}$ only $\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}$, and $\mathbf{3}$ only $\mathrm{O}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{O}$ spanners in each host, making the northern and southern hemispheres identical. In contrast, 4 combines $\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}$ (northern) with $\mathrm{OCH}_{2} \mathrm{O}$ (southern); 5, $\mathrm{O}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{O}$ with $\mathrm{OCH}_{2} \mathrm{O}$; and $\mathbf{6}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{O}$ with $\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}$ as spanning groups. To invoke images of $\mathbf{1 - 6}$, we refer to $\mathbf{1}$ as $\mathbf{M M}$ (methylene-methylene), $\mathbf{2}$ as $\mathbf{E E}$ (ethylene-ethylene), $\mathbf{3}$ as PP (propylene - propylene), $\mathbf{4}$ as EM, $\mathbf{5}$ as PM and $\mathbf{6}$ as PE. The R groups in $\mathbf{7 - 1 0}, \mathbf{1 2 - 1 4}$, and similarly positioned groups in other hosts are called feet, and in Corey-Pauling-Koltun (CPK) models have little effect on the cavities and portals of the hosts. In 1-7 and $\mathbf{9 - 1 2}$ these groups are all $\mathrm{C}_{5} \mathrm{H}_{11}$. In $\mathbf{1 3}$ and $\mathbf{1 4}$, they are CH_{3} and in most other studied hosts including $\mathbf{8}, \mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph} .{ }^{5}$ Notice that $7-9$ contain the shorter

[^0]$\mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{O}$ bridges, and $\mathbf{7}$ and $\mathbf{8}$ possess $\mathrm{OCH}_{2} \mathrm{O}$, and $\mathbf{9}$, $\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}$ spanners. ${ }^{2}$

Crystal structures of $\mathbf{1 3}^{2}$ (a close relative of $\mathbf{1 0}$) and of $\mathbf{8}^{3}$ each possess an approximate C_{4} axis. Crystal structures of $\mathbf{1 1}$ and of $\mathbf{9},{ }^{2}$ a close relative of $\mathbf{2}$, both exhibit approximate C_{2} symmetry that deviates from C_{4} by about 9% in $\mathbf{1 1}$ but by only 4% in $9 .{ }^{2}$ A crystal structure of $\mathbf{1 4}$, a model for $\mathbf{1 2}$, possesses mirror $\left(C_{\mathrm{S}}\right)$ symmetry, but deviates from C_{4} by $37 \% .^{2}$

Molecular models (CPK) ${ }^{6}$ of $\mathbf{3}, 5$ and $\mathbf{6}$ that contain \mathbf{P} units can be assembled only if the conformations of the $\mathrm{O}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{O}$ spanners provide their hemispheres with an approach to C_{4} symmetry. The two simplest conformations of \mathbf{P} units in $\mathbf{P P}$, PE, and PM in models that possess C_{4} axes and minimize $\mathrm{C}-\mathrm{O}$ dipole-dipole energies are (1) that in which the four bridges are outward (bo) and the spanners are upward (su as drawn in 12); (2) that in which the four bridges are inward (bi) and the spanners are outward (so). The \mathbf{P} units in the bo-su conformation shorten polar axes, lengthen equatorial axes, and shrink the portals in hemicarcerands, while \mathbf{P} units in the bi-so conformation lengthen polar axes, shorten equatorial axes, and enlarge portals in hemicarcerands. For example, host PP (3) in the bo-su conformation has essentially no portals, but has very large portals in the bi-so conformation. In CPK models, the \mathbf{M} and \mathbf{E} units have relatively little conformational mobility. ${ }^{2}$ Models of hemicarcerands $\mathbf{1 - 6}$ in those conformations which maximize their portal sizes assume the order $\mathbf{P P}>\mathbf{P M}>\mathbf{M M}$ $>\mathbf{P E}>\mathbf{E M}>\mathbf{E E}$. However, the host's portal adaptability to guest shape for complexation-decomplexation provides the order $\mathbf{P P}>\mathbf{P M}>\mathbf{P E}>\mathbf{M M}>\mathbf{E M}>\mathbf{E E}$. The hosts in those conformations that appear to maximize their inner volume have the order, $\mathbf{P P}>\mathbf{P E}>\mathbf{E E}>\mathbf{P M}>\mathbf{E M}>\mathbf{M M}$. The order of shell-closure yields leading to these six hemicarcerands is $\mathbf{M M}>\mathbf{E E}>\mathbf{P E}>\mathbf{E M}>\mathbf{P P}>\mathbf{P M} .^{2}$

Results

Complexation. Table 1 indicates which host \odot guest combinations form isolable complexes from hosts $\mathbf{1 - 9}$ and 24
(6) Koltun, W. L. Biopolymers, 1965, 3, 665-679.

Chart 1

3. or PP

5, or PM

Chart I (continued)

7, $\mathrm{R}=\mathrm{C}_{5} \mathrm{H}_{11}$
8, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$

10, (M), $X=O H, R=\mathrm{C}_{5} \mathrm{H}_{11}$ 13, $X=B r, R=\mathrm{CH}_{3}$

9, $\mathrm{R}=\mathrm{C}_{5} \mathrm{H}_{11}$

11, (E), $\mathrm{X}=\mathrm{OH}$

12, (P), $\mathrm{X}=\mathrm{OH}, \mathrm{R}=\mathrm{C}_{5} \mathrm{H}_{11}$
14, $X=\mathrm{Br}, \mathrm{R}=\mathrm{CH}_{3}$
different guests. Each complex is assigned a number. Of the 40 complexes obtained, 35 were formed by heating homogeneous liquid phases composed of free host, at least 1000 -fold excess of guest, and when needed, $\mathrm{Ph}_{2} \mathrm{O}$ as solvent. Model examinations show that $\mathrm{Ph}_{2} \mathrm{O}$ is too large and unadaptable to enter any of the hosts except MM (1), PM (5), and PP (6). The cooled reaction mixtures were flooded with MeOH , the precipitated complexes were washed, dried, and chromatographed (silica gel plates $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane for most of the complexes). Table 1 provides the conditions for the thermally induced complexation and shows how each complex was characterized. The other five complexes were obtained by shell closures ($\mathbf{1 5}$ or $7 \odot \mathrm{Me}_{2} \mathrm{SO}, \mathbf{1 6}$ or $\mathbf{8} \odot \mathrm{Me}_{2} \mathrm{SO},{ }^{3} \mathbf{1 7}$ or $9 \odot \mathrm{Me}_{2} \mathrm{SO}^{2}, \mathbf{2 2}$ or $\mathbf{M M} \odot \mathrm{Ph}_{2} \mathrm{O}$ and $\mathbf{5 3}$ or $\left.\mathbf{P M} \odot 1,2,3-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{3}{ }^{2}\right)$. The complex $\mathbf{1 5}\left(7 \odot \mathrm{Me}_{2} \mathrm{SO}\right)$ is new, but prepared by standard procedures. ${ }^{2,3}$ The ${ }^{1} \mathrm{H}$ NMR spectral changes of host and guest in CDCl_{3} solution at $25^{\circ} \mathrm{C}$ before and after complexation ($\Delta \delta=$ $\delta_{\text {free }}-\delta_{\text {complexed }}$) are collated with their structures in Table 2.

All complexes gave FAB-MS in which the m / e values coincided with (host \odot guest $)^{+}$as the dominant signal, or at least as a very substantial signal. An understandable exception is $32\left(\mathbf{E E} \odot \mathrm{PhCH}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{Me}\right)$. The ${ }^{1} \mathrm{H}$ NMR spectra of all complexes showed them to be one-to-one. Those complexes obtained in a pure state (32 out of 37 new complexes) when submitted to elemental analysis gave results within 0.40% of theory.

Scavenging of Trace Impurities. In three attempts to form complexes in which guests served as the solvent, low concentra-
tions of isomeric impurities were incarcerated faster than the bulk solvent: (1) When Aldrich " $99 \% \mathrm{Me}_{3} \mathrm{CPh}$ " (in our hands $2 \% \mathrm{PhCH}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{Me}$ by $\left.\mathrm{GC}-\mathrm{MS}\right)$ was used as a medium for complexing EE (72 h at $150{ }^{\circ} \mathrm{C}$), a 2:1 ratio of $\mathbf{3 3}\left(\mathbf{E E} \odot \mathrm{Me}_{3}-\right.$ $\mathrm{CPh})$ to $32\left(\mathbf{E E} \odot \mathrm{PhCH}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{Me}\right)$ was isolated, indicating that $\mathrm{PhCH}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{Me}$ was incarcerated ~ 25 times faster than $\mathrm{Me}_{3} \mathrm{CPh}$. At $25{ }^{\circ} \mathrm{C}$ in $\mathrm{CDCl}_{3}, 32\left(\mathbf{E E} \odot \mathrm{PhCH}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{Me}\right)$ decomplexed much faster than $33\left(\mathbf{E E} \odot \mathrm{Me}_{3} \mathrm{CPh}\right)$, which was stable indefinitely. (2) When $3-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{COMe}$ was used as solvent in an attempt to complex $\mathbf{E E}\left(96 \mathrm{~h}, 150^{\circ} \mathrm{C}\right.$), a mixture of $\mathbf{E E} \odot 3-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{COMe}$ and empty $\mathbf{E E}$ (ratio $44: 55$, respectively) was formed. In an attempt to form $\mathbf{E E} \odot 4-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{COMe}$ ($96 \mathrm{~h}, 150{ }^{\circ} \mathrm{C}$), only $41\left(\mathbf{E E} \odot 2-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{COMe}\right)$ and free $\mathbf{E E}$ (ratio $2: 1$, respectively) were obtained. Thus the relative rates of complexation of $\mathbf{E E}$ by the three isomeric guests were 1,2isomer $\gg 1,3$-isomer $\ggg 1,4$-isomer. Only 41 (EE®2$\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{COMe}$) was obtained pure and was characterized. (3) When $1,3,5-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{3}$ containing EE was heated to $150{ }^{\circ} \mathrm{C}$ for 3 days, only $\mathbf{3 1}\left(\mathbf{E E} \odot 1,2,4-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{3}\right)$ was obtained. Thus 1,2,4$\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{3} \gg 1,3,5-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{3}$ in rate of incarceration. The scavenging of low levels of impurities of structural isomers points to high levels exercised by the host for structural recognition in complexation.

Crystal Structures of 37 or $\mathrm{EE} \odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OM}$, 52 or $\mathrm{PE} \odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}, 50$ or $\mathrm{PE} \odot 1,2-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}$, and 55 or $\mathbf{E M} \odot 4-\mathrm{MeC}_{6} \mathbf{H}_{\mathbf{4}} \mathbf{O M e}$. All four of the new crystal structures reported here belong to the triclinic space group $\mathrm{P} \overline{1}$, and all four require a disorder model.

Table 1. Thermal Conditions for Complexation, Isolation Procedures, and Characterization of Complexes ${ }^{a}$

$\begin{gathered} \text { complex } \\ \text { no. } \end{gathered}$	complexing partners		medium	$T\left({ }^{\circ} \mathrm{C}\right)$	t (days)	isolation procedure ${ }^{b}$	yield (\%)	FAB MS (${ }^{+}$) (obs (\%))		$\begin{gathered} \mathrm{C}+\mathrm{H} \\ \text { anal. }^{\mathrm{c}} \end{gathered}$
	host	guest						m / e complex	m / e host	
15	7	$\mathrm{Me}_{2} \mathrm{SO}$	$\mathrm{Me}_{2} \mathrm{SO}^{\text {d }}$	70	3	d	18^{d}	2057 (100)	1978 (70)	yes
16	8	$\mathrm{Me}_{2} \mathrm{SO}$	$\mathrm{Me}_{2} \mathrm{SO}^{d}$	70	5	d	18^{d}	2329 (100)	2251 (35)	yes
17	9	$\mathrm{Me}_{2} \mathrm{SO}$	$\mathrm{Me}_{2} \mathrm{SO}^{d}$	74	2	d	9^{d}	2167 (100)		yes
18	MM	$\mathrm{CBr}_{2} \mathrm{HCBr}_{2} \mathrm{H}$	guest	105	1.5	A	65	2520 (40)	2170 (100)	yes
19	MM	$\mathrm{Me}_{3} \mathrm{CCOMe}$	guest $+\mathrm{Ph}_{2} \mathrm{O}^{e}$	100	5	B	$\sim 30^{a}$	2270 (30) ${ }^{a}$	2170 (100)	no ${ }^{\text {a }}$
20	MM	$\mathrm{Me}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{C}(\mathrm{OH}) \mathrm{Me}_{2}$	guest $+\mathrm{Ph}_{2} \mathrm{O}^{e}$	160	2	A	40	2290 (25)	2170 (100)	yes
21	MM	$\mathrm{Me}_{3} \mathrm{CPh}$	guest	160	3	B	62	2305 (100)	2170 (75)	yes
22	MM	$\mathrm{Ph}_{2} \mathrm{O}$	guest + NMP ${ }^{f}$ f	65	3	g	10	2343 (100)	2170 (5)	yes
23	MM	1,2,3-(MeO) ${ }_{3} \mathrm{C}_{6} \mathrm{H}_{3}$	guest	160	2	A	74	2339 (100)	2170 (15)	yes
24	MM	1,2,3-(MeO) $3_{3}-5-\mathrm{HOC}_{6} \mathrm{H}_{2}$	guest $+\mathrm{Ph}_{2} \mathrm{O}^{e}$	150	1.5	A	40	2354 (100)	2170 (5)	yes
25	EM	$\mathrm{Me}_{3} \mathrm{CPh}$	guest	160	3	B	65	2360 (100)	2226 (60)	yes
26	EM	1,2,3-(MeO) $3_{3} \mathrm{C}_{6} \mathrm{H}_{3}$	guest	160	2	A	70	2396 (100)	2226 (25)	yes
27	EE	MePh	guest	110	1.5	B	76	2376 (85)	2282 (100)	yes
28	EE	$1,2-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	guest	130	2	B	60	2389 (100)	2282 (55)	yes
29	EE	$1,3-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	guest	130	1.5	B	75	2389 (95)	2282 (100)	yes
30	EE	1,4-Me ${ }_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	guest	130	2	B	80	2389 (35)	2282 (100)	yes
31	EE	1,2,4-Me ${ }_{3} \mathrm{C}_{6} \mathrm{H}_{3}$	guest	160	2	B	81	2404 (100)	2282 (60)	yes
32	EE	$\mathrm{PhCH}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{Me}$	guest	160	3	B	70	$2404{ }^{h}$ (35)	2282 (100)	yes ${ }^{i}$
33	EE	$\mathrm{Me}_{3} \mathrm{CPh}$	guest	160	11	B	$\sim 40^{a}$	2417 (70) ${ }^{a}$	2282 (100)	no ${ }^{\text {a }}$
34	EE	1,2-(MeO) $2_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	guest	130	2	B	60	2421 (100)	2282 (50)	yes
35	EE	1,4-(MeO) $2_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	guest $+\mathrm{Ph}_{2} \mathrm{O}^{e}$	160	3	B	30	2421 (30)	2282 (100)	no
36	EE	1,2,3-(MeO) ${ }_{3} \mathrm{C}_{6} \mathrm{H}_{3}$	guest	160	3	A	62	2451 (100)	2282 (35)	yes
37	EE	$4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}$	guest	150	1	B	64	2404 (20)	2282 (100)	yes
38	EE	coumarin	guest $+\mathrm{Ph}_{2} \mathrm{O}^{e}$	185	4	C	47	2430 (30)	2282 (100)	yes
39	EE	PhCOMe	guest	160	2	B	78	2403 (50)	2282 (100)	yes
40	EE	2- $\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{COMe}$	guest	160	3	B	55	2417 (100)	2282 (70)	yes
41	EE	$2-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{COMe}$	guest	150	4	B	70	2437 (100)	2282 (75)	yes
42	EE	$2-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{COMe}$	guest	150	2	B	$\sim 35^{a}$	2481 (40)	2282 (100)	no ${ }^{\text {a }}$
43	EE	$2-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{COMe}$	guest	160	2	A	68	2434 (100) ${ }^{a}$	2282 (100)	yes
44	EE	2- $\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{Me}$	guest	150	3	B	46	2454 (85)	2282 (100)	yes
45	PE	$\mathrm{Me}_{3} \mathrm{CPh}$	guest	160	2	B	50	2473 (65)	2338 (100)	yes
46	PE	coumarin	guest $+\mathrm{Ph}_{2} \mathrm{O}^{e}$	160	4	B	50	2487 (60)	2338 (100)	yes
47	PE	PhCOMe	guest	160	1	B	75	2458 (75)	2338 (100)	yes
48	PE	2-MeC6 $\mathrm{H}_{4} \mathrm{COMe}$	guest	160	3	B	65	2473 (100)	2338 (65)	yes
49	PE	$2-\mathrm{MeOC} 6 \mathrm{H}_{4} \mathrm{COMe}$	guest	160	2	A	70	2489 (65)	2338 (100)	yes
50	PE	1,2-(MeO) $2_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	guest	160	2	B	55	2476 (90)	2338 (100)	yes
51	PE	1,2,3-(MeO) ${ }_{3} \mathrm{C}_{6} \mathrm{H}_{3}$	guest	160	2	A	50	2507 (85)	2338 (100)	yes
52	PE	$4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}$	guest	150	1	B	70	2459 (45)	2338 (100)	yes
53	PM	1,2,3-(MeO) ${ }_{3} \mathrm{C}_{6} \mathrm{H}_{3}$	d	60	2	d	$1.8{ }^{\text {d }}$	2449 (100)	2281 (80)	yes
54	PP	$\mathrm{Me}_{3} \mathrm{CPh}$	guest	160	3	B	$\sim 35^{\text {a }}$	2529 (60) ${ }^{a}$	2394 (100)	no ${ }^{\text {a }}$

${ }^{a}$ All pure complexes gave expected ${ }^{1} \mathrm{H}$ NMR spectra, detailed in Table 2. Inseparable but purified mixtures of host and complex, analyzed by ${ }^{1} \mathrm{H}$ NMR spectra, were obtained in the ratios as follows: $\mathbf{1 / 1 9}\left(\mathbf{M M} / \mathbf{M M} \odot \mathrm{Me}_{3} \mathrm{CCOMe}\right)=1 ; \mathbf{2 / 3 3}\left(\mathbf{E E} / \mathbf{E E} \odot M e_{3} \mathrm{CPh}\right)=0.9 ; \mathbf{2 / 4 2}(\mathbf{E E} / \mathbf{E E} \odot 2-$ $\left.\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{COMe}\right)=1 ; \mathbf{3 / 5 4}\left(\mathbf{P P} / \mathbf{P P} \odot \mathrm{Me}_{3} \mathrm{CPh}\right)=1$. Yields were corrected with these ratios. Elemental analyses were not performed but FAB MS were obtained from these mixtures. ${ }^{b}$ See Experimental Section. ${ }^{c}$ Carbon and hydrogen elemental analyses are within 0.40% of theory. ${ }^{d}$ Complex formed by shell closure only (refs 2 and 3). ${ }^{e}$ Ratio $1: 1$ (w/w). ${ }^{f}$ NMP is N-methylpyrrolidinone. ${ }^{g}$ Shell-closure reaction with 19:1 (v/v) NMP$\mathrm{Ph}_{2} \mathrm{O}$ (see Experimental Section). ${ }^{h}$ (M minus Me). ${ }^{i}$ This complex contains $3 \mathrm{H}_{2} \mathrm{O}$.

The host in the crystal structure (298 K) of 37 (EE $\odot 4-$ $\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}$) lies on a center of symmetry. There are four interstitial 4-MeC ${ }_{6} \mathrm{H}_{4} \mathrm{OMe}$ molecules, in addition to the incarcerated $4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}$ guest. The four bridge oxygen atoms of each cavitand moiety (bowl) are coplanar within $0.00 \AA$ and form an approximate square, with angles of 86.9, 87.9, 90.5 , and 94.8°. The guest $4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}$ must be modeled with disorder because it is non-like-ended and it lies on a center of symmetry. In the refined model, all the non-hydrogen guest atoms are coplanar.

Neither the host nor the guest of the hemicarceplex in the crystal structure (175 K) of $52\left(\mathbf{P E} \odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)$ can be centrosymmetric, but their departures from being centrosymmetric are small enough for the complex to fall on a crystallographic center of symmetry. The required disorder in the host is confined to the regions of the spanners, which embrace the disordered Me and MeO groups of the guest, whose nonhydrogen atoms are coplanar. The four bridge oxygen atoms of each bowl are within $0.02 \AA$ of being coplanar and form a near square whose angles are $88.7,88.9,90.0$, and 92.3°. There is one interstitial $4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}$ molecule in the unit cell.

In the crystal structure (175 K) of $\mathbf{5 0}\left(\mathbf{P E} \odot 1,2-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$
the disorder is similar to that in $\mathbf{5 2}\left(\mathbf{P E} \odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)$. The two cavitand moieties in each complex have different spanners, but every other part of the host seems to conform to the center of symmetry so that the host disorder is only apparent in the spanner region. One molecule of $1,2-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ is located in the host cavity of its complex. Since this guest is not centrosymmetric it is also disordered. The bridge oxygen atoms from one cavitand moiety are coplanar within $0.04 \AA$ and form a near square, with angles $86.3,90.4,90.5$, and 92.8°. Six additional $1,2-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ molecules crystallize with the hemicarceplex.

In the crystal structure (298 K) of $\mathbf{5 5}\left(\mathbf{E M} \odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)$, the disorder is similar to that in the two PE complexes. There are four interstitial $4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}$ molecules per molecule of complex. The bridge oxygen atoms from one cavitand moiety are coplanar within $0.00 \AA$ and form a near square, with angles 87.9, 88.7, 90.8 , and 92.6°.

Table 3 contains side stereoviews of these four crystal structures, and top stereoviews including only the oxygen squares (connected with straight lines), bridges and guest. Notice in the top stereoviews that in all four structures the guest's aryl plane is diagonally arranged with respect to the
two near squares, which are neither rotated nor displaced with respect to one another. A view from the bottom of 52 (PE®4$\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}$) minus feet is portrayed, as well as a similar view minus one bowl and the feet. Table 3 also includes for comparisons stereoviews of $\mathbf{1 7}\left(9 \odot \mathrm{Me}_{2} \mathrm{SO}\right) .{ }^{2}$ All eight spanners of 9 are $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$, and the host in the crystal structure possesses a center of symmetry. The top view of the oxygen "squares", guest, and bridges shows that the two sets of bridge oxygens are more nearly diamond shaped than square. Note that the bridge carbons of $\mathbf{5 5}\left(\mathbf{E M} \odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right), \mathbf{3 7}$ $\left(\mathbf{E E} \odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right), 52\left(\right.$ PE $\left.\odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right), 50($ PE $\odot 1,2-$ $\left.(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$, and $\mathbf{1 7}\left(9 \odot \mathrm{Me}_{2} \mathrm{SO}\right)$ all lie outside the volume described by the eight bridging oxygens of the hosts. Table 4 provides parameter values taken from the crystal structures of $\mathbf{5 5}, \mathbf{3 7}, 52,50,17,{ }^{2} \mathbf{1 1},{ }^{2}$ and 14^{2} which bear on the questions of the effects of bowl incorporation into hemicarcerands, and of the effects of different guests, on bowl structure in hemicarcerands.

Discussion

Formation of Hemicarceplexes Stable to Isolation and Purification. The complexes of $\mathbf{1 - 6}$ listed in Table 5 were formed by the thermal equilibration and precipitation method except for $53\left(\mathbf{P M} \odot 1,2,3-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{3}\right)$, which was formed during shell closure. Complex $22\left(\mathbf{M M} \odot \mathrm{Ph}_{2} \mathrm{O}\right)$ was formed by both methods. Those compounds selected for trial as guests were chosen on the basis of our ability to force CPK models (new bonds) of guest into models of the host, frequently with considerable difficulty and repeated trials, but without breaking bonds. The more complete testing of PM and PP as hosts was prevented by their very limited availability.

The isolable complexes listed in Table 5 contain guests composed of 6-13 atoms other than hydrogen. The simplest of these $\left(\mathrm{Br}_{2} \mathrm{CHCHBr}_{2}\right)$ contains the four large bromine atoms and two trisubstituted carbons. The next smallest is $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$ (seven rigidly disposed carbons), followed by $\mathrm{Me}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{C}(\mathrm{OH})-$ Me_{2} (six carbons, two quaternary, plus two oxygens), and the xylenes (eight coplanar carbons). Most of the other guests are di- or trisubstituted benzenes. The two guests that formed the most complexes (five each) were $\mathrm{Me}_{3} \mathrm{CC}_{6} \mathrm{H}_{5}$ (contains a quaternary carbon and a phenyl) and $1,2,3-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{3}$ (is rigidified by the $1,2,3$-trisubstituted pattern). In general, the guests that formed the most complexes were those which for steric or electronic reasons extend substantially into all three dimensions. Interestingly, 1,2-disubstituted benzenes complexed and decomplexed hosts more easily than their 1,3 - and $1,4-$ disubstituted isomers. In CPK models, the guest 1,4-(MeO) $)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ of $35\left(\mathbf{E E} \odot 1,4-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$, positioned so that the long guest axis is coincident with the polar axis of the host, fully uses the available length of this dimension of the cavity. Attempts to form the following complexes in isolable form failed, although ${ }^{1} \mathrm{H}$ NMR spectral evidence for their fleeting presence in CDCl_{3} was observed: $\mathrm{EE} \odot \mathrm{Me}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{Me}$, $\mathbf{M M} \odot \mathrm{MePh}, \mathbf{M M} \odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}, \mathbf{M M} \odot \mathrm{MeCOPh}, \mathbf{M M} \odot 1,2-$ $(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}, \mathbf{M M} \odot 1,4-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}, \mathbf{E M} \odot \mathrm{MeCOPh}$ and $\mathbf{P E} \odot 6-$ methylcoumarin. Complexes particularly slow to form were 41 (EE $\left.\odot 2-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{COMe}\right), 42$ ($\mathbf{E E} \odot 2-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{COMe}$), 33 $\left(\mathbf{E E} \odot \mathrm{Me}_{3} \mathrm{CPh}\right)$, and $\mathbf{5 4}\left(\mathbf{P P} \odot \mathrm{Me}_{3} \mathrm{CPh}\right)$. Model examination of $1,3,5-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{3}$ and $\mathbf{E E}$ suggested no complex should form, and none was observed ($3 \mathrm{~d}, 150{ }^{\circ} \mathrm{C}$).

Failure to obtain particular hemicarceplexes of hosts 1-9 can be due to any of three reasons: (1) The guests are too large to pass through the portals of the host at elevated temperature because the sizes or shapes of the portals and guests are too noncomplementary. The kinetic barrier to complexation is too large to be overcome by thermal means. (2) The free host and
guest are thermodynamically more stable than is their complex, to an extent great enough to overcome the mass law driving force for complexation provided by the >1000-fold concentration excess of guest over host in the binding experiments. For example, a guest may be too large or ill-shaped to fit into the host's cavity, which possesses limited adaptability. Alternatively, if the host and guest are complementary but the entropy of binding is large and negative and the complexation activation free energy is high enough to require too high a temperature to reach equilibration, $T \Delta S$ values at that temperature may strongly favor free host and guest. ${ }^{4}$ (3) The guest is small enough to enter and depart the interior of the host with a low enough activation energy at ambient temperature so that mass law-driven exchange of guest with solvent occurs during isolation of the complex. Methanol was chosen as precipitant for the complexes because if it ever entered the host, it was lost during the chromatographic purification of the complex, since it was never detected in ${ }^{1} \mathrm{H}$ NMR or mass spectra of the products.

Crystal Structure Comparisons. Comparisons of the crystal structure parameters (Table 4) of $\mathbf{5 5}\left(\mathbf{E M} \odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right), \mathbf{3 7}$ (EE $\left.\odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right), 52$ (PE $\left.\odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right), 50$ (PE $\odot 1,2-$ $\left.(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right), \mathbf{1 7}\left(\mathbf{9} \odot \mathrm{Me}_{2} \mathrm{SO}\right)$, tetrol bowl $11(\mathbf{E})$, and tetrabromide bowl $14(\mathbf{P})$ provide interesting conclusions about the effects of guest shapes, bridging, and spanner groups on bowl dimensions and shapes. Most obviously different is the diamond-shaped arrangement of the much less coplanar oxygens in $\mathbf{1 7}\left(9 \odot \mathrm{Me}_{2} \mathrm{SO}\right.$, four $\mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{O}$ bridges) and in bowl 11 , which become near-square and coplanar in $55\left(\mathbf{E M} \odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)$, 37 (EE $\left.\odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)$, 52 (PE $\odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}$), and 50 $\left(\mathbf{P E} \odot 1,2-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$. The $\mathrm{C} \cdots \mathrm{C}$ diagonal length differences in the carbon \mathbf{b} plane in diagram 56 (Table 4) provide a measure of the constraint the bridges put on the bowls pushing them toward the square arrangement. These differences in $\mathrm{C} \cdots \mathrm{C}$ diagonal lengths (\AA) decrease as follows: bowl 14, 5.59 ; bowl 11, 1.47; $\mathbf{1 7}\left(\mathbf{9} \odot \mathrm{Me}_{2} \mathrm{SO}\right), 0.75 ; \mathbf{5 0}\left(\mathbf{P E} \odot 1,2-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right), 0.31$; 52 (PE $\left.\odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right), 0.10 ; 37\left(\mathbf{E E} \odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right), 0.06$; $55\left(\mathbf{E M} \odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right), 0.03 \AA$. The out-of-plane C atom distances (\AA) for plane \mathbf{b} (diagram 56) also provide a measure of how much the bridges impose shapes on the bowls (see Table 4). Both criteria indicate $1,3-\left(\mathrm{OCH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ bridges $>\mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{O}$ bridges > no bridges in pushing the \mathbf{E} and \mathbf{P} bowls toward a C_{4} arrangement in the hemicarcerand hosts. This order reflects the coplanarity imposed by the m-xylyl unit on five of the seven atoms of the bridge in $\mathbf{E M}, \mathbf{E E}$, and PE hosts, and the greater conformational freedom of the $\mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{O}$ (six atom) bridges.

The four-carbon atom planes \mathbf{c} and \mathbf{d} (diagram 56, Table 4) are much less sensitive to the bridges and spanners than are planes \mathbf{a} and \mathbf{b}. For example, the $(\mathbf{C} \cdots \mathrm{C})_{\mathrm{av}}$ distances (\AA) for the diagonals of plane \mathbf{c} range between a high of 5.26 for $\mathbf{1 4}$ to a low of 5.10 for 11, the distances for the five complexes lying between these two values. The C out-of-plane \mathbf{c} distances are all small, varying from ± 0.07 to $\pm 0.01 \AA$. The $(C \cdots C)_{\text {av }}$ distances (\AA) for the diagonals of plane \mathbf{d} (the carbons of the feet attached directly to the bowl) also vary only slightly with changes in the bridges and spanners, between values of 7.38 and $7.20 \AA$. The C out-of-plane \mathbf{d} distances all vary only between ± 0.00 and $\pm 0.03 \AA$ for the seven systems. Thus the structures of the polar regions of both the cavitands and hemicarcerands are relatively insensitive to changes in spanners and bridges.

The crystal structures of $\mathbf{5 2}\left(\mathbf{P E} \odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)$ and $\mathbf{5 0}$ $\left(\mathbf{P E} \odot 1,2-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$ at 175 K are particularly interesting because the hosts are the same but the guests are different. Furthermore, each host includes two sets of bowls that differ in their spanners, one being \mathbf{P} or $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$ and the other

Table 2. Chemical Shift Changes $(\Delta \delta)$ in $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR Spectra in CDCl_{3} at $25{ }^{\circ} \mathrm{C}$ that Accompany Complexation of Hosts and Guests

Table 2 (Continued)

compl.	carce	g parmers	complexed guest δ (ppm)				complexed guest $\delta \Delta(\mathrm{ppm})^{\text {a }}$				of bridge (ppm) free complex		
numb.	host	$\begin{gathered} \begin{array}{c} \text { guest } \\ \text { structure } \end{array} \\ \hline \end{gathered}$	${ }^{\text {a }} \mathrm{H}$	${ }^{\text {b }} \mathrm{H}$	${ }^{\text {c }} \mathrm{H}$	${ }^{\text {d }} \mathrm{H}$	${ }^{\text {a }} \mathrm{H}$	${ }^{\text {b }} \mathrm{H}$	${ }^{\text {c }} \mathrm{H}$	${ }^{\text {d }} \mathrm{H}$		δ	$\Delta \delta$
42	EE		-0.67	5.91	6.51	4.51	3.31	1.71	0.80	2.95	7.88	7.80	+0.08
43	EE	c^{CH}	-0.81	e	6.30	3.42	3.42		1.16	0.58	7.88	7.85	+0.03
49	PE		-0.55	e	e		3.16				7.95	7.98	-0.03
37	EE	. $\mathrm{CH}_{3}(\mathrm{a})$	0.42	5.39	5.51	-1.34	3.36	1.41	1.58	3.63	7.88	7.78	+0.10
52	PE		0.42	5.30	5.42	-0.99	3.36	1.50	1.67	3.28	7.95	7.91	+0.04
34	EE		1.80	4.73	4.92		2.08	2.17	1.98		7.88	7.84	+0.04
50	PE		1.84	4.76	4.93		2.04	2.14	1.97		7.95	7.98	-0.03
35	EE		0.37	5.44			3.40	1.42			7.88	7.82	+0.06
23	MM		-0.11	2.85	5.18	6.43	3.96	1.01	1.40	0.56	7.46	7.30	+0.16
26	EM	$\mathrm{H}_{3}(\mathrm{~b})$	$\begin{gathered} -0.44 \mathrm{f} \\ 0.32 \mathrm{f} \end{gathered}$	2.92	4.92	6.46	$\begin{aligned} & 4.29^{\mathrm{f}} \\ & 3.53 \mathrm{f} \end{aligned}$	0.94	1.66	0.53	7.60	7.40	+0.20
36	EE		0.34	2.92	4.77	6.52	3.51	0.94	1.81	0.47	7.88	7.69	+0.19
53	PM		-0.21	3.01	5.22	6.45	4.06	0.85	1.36	0.54	g	7.35	
51	PE		0.76	2.90	4.62	e	3.09	0.96	1.96		7.95	7.80	+0.15
38	EE		2.92	4.28	c	e	3.50	3.42			7.88	7.98	-0.10
46	PE		3.05	4.48	e	e	3.37	3.22			7.95	8.09	-0.14
44	EE		0.34	6.36	e	e	3.56	1.46			7.88	7.77	+0.11

${ }^{a}$ Free guest δ values in CDCl_{3} can be calculated from the equation: $\delta_{\text {free }}=\Delta \delta+\delta_{\text {complexed }} . \mathbf{M M} \odot \mathrm{Ph}_{2} \mathrm{O}{ }^{1} \mathrm{H}$ NMR data are given in the text. ${ }^{b}$ Unpublished results on completely characterized complex prepared by standard procedures (ref 3), T. A. Robbins and D. J. Cram. ${ }^{c}$ Feet $=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$, ref 3. ${ }^{d} \mathbf{M M} \odot 1,2,3-(\mathrm{MeO})_{3}-5-\mathrm{HOC}_{6} \mathrm{H}_{2}{ }^{1} \mathrm{H}$ NMR spectrum was taken in $\mathrm{CDCl}_{2} \mathrm{CDCl}_{2} .{ }^{e}$ Signal obscured by other peaks. ${ }^{f}$ For $\mathbf{E M} \odot 1,2,3-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{3}$ (not for MM, EE, PM, or EE) the two sets of ${ }^{\text {a }} \mathrm{H}$ have different $\delta .{ }^{g}$ Free $\mathbf{P M}$ was not prepared.
\mathbf{E}, or $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$. At the low temperature in both complexes, all five carbon atoms of the two kinds of spanners are visible in the electron density maps in conformations that provide reasonable bond angles and bond distances. In 50, some of the spanner oxygens are disordered, whereas in $\mathbf{5 2}$ the positions of the oxygen atoms of the two kinds of spanners are not discernibly different. Thus the remarkable feature of the structure of $\mathbf{5 2}$ is that the oxygens that terminate each spanner are in positions that are independent of whether they terminate $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ or $\mathrm{CH}_{2} \mathrm{CH}_{2}$ spanners, even though the four $\mathrm{O} \cdots \mathrm{O}$ edge distances (bridge O atoms) of plane a are all different (see 56 of Table 4). The latter four distances for $52\left(\mathbf{P E} \odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4}-\right.$ OMe) average $7.32 \pm 0.15 \AA$ (extremes), and for 50 (PE $\odot 1,2-$ $(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}$) they average $7.35 \pm 0.26 \AA$ (extremes). As required by the center of symmetry, the four distances in each
complex are the same for the two kinds of bowls, and all the other parameters given in Table 4 for $52\left(\mathbf{P E} \odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)$ and for $50\left(\mathbf{P E} \odot 1,2-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$ are identical and independent of their locations in the \mathbf{P} or \mathbf{E} parts of the hosts. Thus only one column of values needs to be listed for each hemicarceplex. Furthermore, in looking along the central polar axis of each host (bottom views in Table 3), all host atoms in the near hemisphere except the carbons of the spanners approximately eclipse the host atoms in the far hemisphere, even though the hosts do not have a crystallographic C_{4} axis. Even the diagonally related $1,3-\left(\mathrm{OCH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ bridges are nearly coplanar. Finally, the hosts' \mathbf{P} and \mathbf{E} bowls are not further disordered in the lattice. In the structures of $\mathbf{5 2}\left(\mathbf{P E} \odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)$ and $50\left(\mathbf{P E} \odot 1,2-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$, all spanners are distinguishable at 175 K , although not at 298 K in the former structure.
Table 3. Stereoviews of Crystal Structures

side view
 (

$\left({ }^{\varepsilon} \mathrm{HOO} \mathrm{O}^{\dagger} \mathrm{H}^{9} \mathrm{~J}^{\varepsilon} \mathrm{HO} \downarrow\right.$ ○ヨd) CS

Table 4. Distances in Crystal Structures Relevant to Effects on Bowl and Bridge Structures of their Being Incorporated into Hemicarcerands

[^1]Table 5. Complexes Isolated and Characterized
Hosts Guests

MM	
EM	
EE	
PE	
PM	
P P	

The guest of 52 (PE $\left.\odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)$ is oriented with its long axis aligned closely with the longer polar axis of the host. Inspection of the four stereoviews of this complex (Table 3) indicates the plane of the guest's aryl is close to being in the
plane of two diagonally related m-xylyl planes of the bridges. Although we cannot infer this directly from our data, it is very likely that the guest is disordered in the lattice with respect to its two different ends, which means both diastereomeric
complexes appear in the crystal. One diastereomer has the guest's Me in the host's \mathbf{E} bowl and the guest's MeO in the host's \mathbf{P} bowl; the other diastereomer has the guest's MeO in the host's \mathbf{E} bowl and the guest's Me in the \mathbf{P} bowl. Model (CPK) examination indicates that with new atom connectors in place, these diastereomerically related isomers can interconvert by guest rotation $\left(180^{\circ}\right)$ around its shorter equatorial axis with many host-parts' synchronous adjustments, but without disconnecting the bonds. In contrast, the guest in models can rotate $\left(90^{\circ}\right)$ much more easily around its longer polar axis to a position in which the guest is coplanar with the alternate set of coplanar diagonally placed $\mathrm{C}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}$ parts of the bridges (top views, Table 3). There is no evidence that such a disorder of the guests with respect to the polar axis is present in the four structures reported here.

In $50\left(\mathbf{P E} \odot 1,2-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$, whose guest non-hydrogen atoms are nearly coplanar, the guest lies roughly in the neardiagonal plane defined by those two diagonally related m-xylene bridges whose attached oxygens provide the longer $\mathrm{O} \cdots \mathrm{O}$ diagonal distance (plane a, Table $4,10.53 \AA$ vs $10.24 \AA$ for the shorter). Both views in Table 3 show that one MeO group of the guest occupies the \mathbf{E} bowl and the other MeO group is equatorially oriented, but this particular representation is arbitrary, since the arrangement with one MeO group of the guest occupying the \mathbf{P} bowl and the other MeO group equatorially oriented is equally consistent with the data. These two structures are diastereomers, and since both host and guest are disordered, we cannot know whether only one or both diastereomers are present. In CPK models, these two diastereomers can be easily interconverted by rotation of the guest around a host equatorial axis with little host cooperation. Guest rotation about the host's polar axis is also possible but is more difficult, because spanner and bridge conformational adaptations are required. The pushing of the "oxygen squares" toward a "diagonal arrangement" in the host of this complex reflects the spatial requirements of the equatorially located MeO group of the guest.

We believe that in both $52\left(\mathbf{P E} \odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)$ and $\mathbf{5 0}$ $\left(\mathbf{P E} \odot 1,2-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$ the adaptation of host to guest deforms the host from near C_{4} symmetry toward near C_{2} symmetry. As the crystal grows, it accepts complexes whose hosts are deformed in the same way, a consequence being that the lattice in its growth does not differentiate between the host's (and the guest's) different ends, but does distinguish between guestinduced host diagonal deformations. Thus the only major disorder in the crystal attributable to host-guest shapes arises from the inability of the lattice to differentiate between the two ends of the host and guest. In effect, the two diastereomeric complexes are isostructural. In this connection, CPK models of the two diastereomeric complexes appear to be equally easy to form. In both complexes the guest's aryl hydrogens are able to avoid compressing the spanners' eight near hydrogens only in their diagonal arrangement, which makes them roughly coplanar with the aryl parts of the coplanar (diagonally arranged) bridges.

Of the two bowls of $\mathbf{5 5}\left(\mathbf{E M} \odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)$, the \mathbf{M} bowl's tetrol (10) possesses C_{4} symmetry in CPK models, in contrast to the C_{2} symmetry of the \mathbf{E} bowl tetrol (crystal structure of 11). In the crystal structure of $\mathbf{5 5}\left(\mathbf{E M} \odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)$, as in that of $\mathbf{5 2}\left(\mathbf{P E} \odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)$, the two different ends of both host and guest appear to be averaged, which is the source of the disorder in the lattice. As in $\mathbf{5 2}\left(\mathbf{P E} \odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)$, the inward-turned hydrogens of the spanning groups in $\mathbf{5 5}$ $\left(\mathbf{E M} \odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right.$) enforce a diagonal arrangement of the guest, which makes the guest roughly coplanar with the aryl parts of the coplanar (diagonally arranged) bridges.

The host in the crystal of $\mathbf{3 7}\left(\mathbf{E E} \odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)$ also has a center of symmetry. The guest is disordered with respect to its two ends, but not with respect to which of the two diagonals it occupies in the host. Thus the growing lattice differentiates between guest deformations of host associated with its diagonal placement, but not with respect to guest-induced deformations of host at its two ends. Thus the deformations of host by the MeO and Me groups are averaged, and only one set of $\mathrm{O} \cdots \mathrm{O}$ distances is observed, as in the crystal structures of 52 (PE®4$\left.\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)$ and $\mathbf{5 0}\left(\mathbf{P E} \odot 1,2-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$. The fact that the maximum spread in $\mathrm{O} \cdots \mathrm{O}$ edge distances for the EE host (0.65 \AA) is more than twice the difference in edge $(\mathrm{O} \cdots \mathrm{O})_{\text {av }}$ of $0.28-$ $0.31 \AA$ between the PE and EE hosts adds credibility to the above explanation of the disparities in the symmetry properties of host, guest, and crystal lattices in $37\left(\right.$ EE $\left.\odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)$, $52\left(\mathbf{P E} \odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)$, and $50\left(\mathbf{P E} \odot 1,2-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$. For comparison, in $\mathbf{5 5}\left(\mathbf{E M} \odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)$, the maximum spread in $\mathrm{O} \cdots \mathrm{O}$ edge distances is $0.40 \AA$, and the difference in edge $(\mathrm{O} \cdots \mathrm{O})_{\mathrm{av}}$ for $\mathbf{E M}$ and $\mathbf{E E}$ is $0.26 \AA$.

A measure of host responses in the equatorial dimension to changes in spanner and bridge lengths and to guest shapes is found (Table 4) in comparisons of the two $\mathrm{O} \cdots \mathrm{O}$ diagonal distances. In passing from the $\mathbf{E E}$ to the two respective $\mathbf{P E}$ hosts, the average $\mathrm{O} \cdots \mathrm{O}$ diagonal distances increase by 0.39 and $0.43 \AA$, respectively. The first and smaller increase of 3.9% represents the change in spanner length (four \mathbf{E} to four \mathbf{P} units), while the larger increase of 4.3% also includes the response of the $\mathbf{P E}$ host to the increased steric demands in its equatorial dimension of $1,2-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ over those of $4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}$. In passing from $37\left(\mathbf{E E} \odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)$ to $\mathbf{1 7}\left(\mathbf{9} \odot \mathrm{Me}_{2} \mathrm{SO}\right.$, bridge lengths and guest shapes change, but spanners are the same), the average $\mathrm{O} \cdots \mathrm{O}$ diagonal distance increases by 0.20 A, or by 2.0%.

The difference in length between the two $\mathrm{O} \cdots \mathrm{O}$ diagonals (Table 4) divided by their average lengths and multiplied by 100% gives a parameter which measures how much the bowls of the five carceplexes and cavitand $\mathbf{1 1}$ deviate from a square to provide a diamond arrangement. The values correlate with structures as follows: $\mathbf{5 5}\left(\mathbf{E M} \odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right), 0.4 \%$; $\mathbf{3 7}$ (EE $\odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}$), 1.2%; $52\left(\mathbf{P E} \odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right), 1.1 \%$; $50\left(\mathbf{P E} \odot 1,2-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right), 2.8 \%$; $\mathbf{1 7}\left(\mathbf{9} \odot \mathrm{Me}_{2} \mathrm{SO}\right), 13.6 \% ; \mathbf{1 1}$, 21.4%. The free bowl (11) possesses a distinctly diamond arrangement, which is about half suppressed in $\mathbf{1 7}\left(9 \odot \mathrm{Me}_{2} \mathrm{SO}\right)$, whose $\left(\mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{O}\right)_{4}$ bridging groups are conformationally flexible, and whose guest is much too small to exert an influence on the host's shape. In passing from bowl 11 to 50 (PE $\odot 1,2-$ $\left.(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$, this parameter undergoes a 7 -fold drop to 2.8%, which is attributed to the increased rigidity of the (1,3$\left.\left(\mathrm{OCH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{4}$ bridges that favors a square arrangement of oxygens. The disk shape of the relatively large $1,2-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ guest requires a diagonal arrangement in the host cavity, which distorts the complex 2.8% from the square structure. This distortion essentially disappears in the case of the three $4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}$ complexes, whose smaller guest is less extended in the diagonal dimensions of the three hosts.

A measure of host responses to changes in spanner lengths and guest shapes in the axial dimensions is found in comparisons of the distances (A) between the two \mathbf{c} planes of the hemicarceplexes listed in Table 4. The c planes are those formed by the four aryl carbon atoms at the two ends of the polar axis of the host's shell (see 56). These distances vary from 11.66 to $10.26 \AA$ and decrease as follows: $55\left(\mathbf{E M} \odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)$ $>37\left(\mathbf{E E} \odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)>\mathbf{5 2}\left(\mathbf{P E} \odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)>50$ $\left(\right.$ PE $\left.\odot 1,2-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)>\mathbf{1 7}\left(9 \odot \mathrm{Me}_{2} \mathrm{SO}\right)$. The substitution of an \mathbf{M} for an \mathbf{E} unit in the first two structures (guest is $4-\mathrm{MeC}_{6} \mathrm{H}_{4}$ -

Table 6. Shell Dimensions of $4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}$ Complexes of Three Known and One Hypothetical Hemicarcerand (PP)

distance (\AA) ($)$	EM	EE	PE	PP
planes \mathbf{c} to \mathbf{c}	11.66	11.30	10.85	10.40
$(\mathrm{O} \cdots \mathrm{O})_{\mathrm{av}}$, edge plane \mathbf{a}	6.78	7.04	7.32	7.60
$(\mathrm{O} \cdots \mathrm{O})_{\mathrm{av}}$, diagonals, \mathbf{a}	9.58	9.95	10.34	10.73

OMe) increases the polar axis length of the shell by 3.2%, whereas substitution of a \mathbf{P} for an \mathbf{E} unit in the second and third structures decreases the polar axis of the shell by 4.0%. Substitution of guest 4-MeC $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}$ in host PE by guest 1,2$(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ reduces the polar axial length of the shell by only 0.6%. Substitution of the EE host bridges of 1,3-($\left.\mathrm{OCH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ by $\mathrm{O}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{O}$, and the $1,2-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ guest by $\mathrm{Me}_{2} \mathrm{SO}$ as in $\mathbf{1 7}\left(9 \odot \mathrm{Me}_{2} \mathrm{SO}\right)$ reduces the shell length by 9.2%. The maximum difference in the axial shell lengths involves 55 (EM $\odot 4-$ $\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}$), which is 14% greater in this dimension than $\mathbf{1 7}$ $\left(9 \odot \mathrm{Me}_{2} \mathrm{SO}\right)$. To the extent data are available, the bridge lengths appear to be more important than either spanner or guest in determining the length of the shell in the axial dimension.

We failed to obtain crystals of $\mathbf{5 4}\left(\mathbf{P P} \odot \mathrm{Me}_{3} \mathrm{CPh}\right)$ suitable for X-ray structure determination. The interpretations of the crystal structures of $\mathbf{3 7}\left(\mathbf{E E} \odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)$ and 52 (PE $\odot 4-$ $\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}$) allow the structural parameters of a hypothetical $\mathbf{P P} \odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}$ to be estimated by linear extrapolation assuming the bo-su conformation for both bowls of the latter, which is observed for the \mathbf{P} bowl of $52\left(\mathbf{P E} \odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)$ (see Table 6). The lengths of the polar axes as measured by $\mathbf{c}-\mathbf{c}$ distances exceed the lengths of the equatorial axes as measured by $(\mathrm{O} \cdots \mathrm{O})_{\text {av }}$ diagonal distances in planes a (see 56) by the following amounts (\AA) : $37\left(\mathbf{E E} \odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right), 1.35$; 52 (PE $\odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}$), 0.51 ; hypothetical $\mathbf{P P} \odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4}$ OMe, $-0.33 \AA$. This near-spherical shape of PP host's hypothetical shell is visible in CPK models. The parameters for $55\left(\mathbf{E M} \odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)$ are included in Table 6 for comparison purposes.

The fact that the hypothetical PP host's equatorial axis exceeds the polar axis in length suggests possible alignments of the longest axis of guests along equatorial axes in the PP host. Although this possibility may be encountered in future crystal structures, it is unlikely for guests whose long ends are bulky, such as $1,4-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}$, but more likely with guests whose long ends are slim, such as $1,4-(\mathrm{HO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}$. The polar bowls are more spacious than the equatorial border regions, which are somewhat encumbered by inward-turned hydrogens of the spanner groups.

Correlations of ${ }^{1} H$ NMR Spectra with Structures of the Hemicarceplexes. The $\Delta \delta$ values for the guests of $\mathbf{1 - 9}$ are all positive, ranging from a high of 4.29 ppm for the (a) $-\left(\mathrm{CH}_{3} \mathrm{O}\right)$ protons of $26\left(\mathbf{E M} \odot 1,2,3-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{3}\right)$ to a low of 0.00 ppm for the (b) $-\mathrm{CH}_{3}$ protons of $32\left(\mathbf{E E} \odot \mathrm{PhCH}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{Me}(\mathrm{b})\right)$ (Table 2). High magnitudes reflect proximity of the guest protons to the shielding faces of the eight aryl groups that define the two polar caps of the hosts, and low magnitudes locate guest protons in the equatorial regions of the hosts. Models of $\mathbf{1 5}$ $\left(7 \odot \mathrm{Me}_{2} \mathrm{SO}\right), \mathbf{1 6}\left(\mathbf{8} \odot \mathrm{Me}_{2} \mathrm{SO}\right)$, and $\mathbf{1 7}\left(9 \odot \mathrm{Me}_{2} \mathrm{SO}\right)$ show that one methyl must occupy a polar cap while the second is equatorially located. The singlet signals show these protons are averaging rapidly on the NMR time scale to provide $\Delta \delta=3.26$ for $\mathbf{1 7}$ $\left(9 \odot \mathrm{Me}_{2} \mathrm{SO}\right)$, somewhat higher than the respective 2.92 and 2.95 ppm values observed for $\mathbf{1 5}\left(7 \odot \mathrm{Me}_{2} \mathrm{SO}\right)$ and $\mathbf{1 6}\left(8 \odot \mathrm{Me}_{2} \mathrm{SO}\right)$, whose hosts differ only in their "feet". As predicted by model examination, changes in the remote feet have little effect on the cavity and guest. Models of $\mathbf{1 7}\left(9 \odot \mathrm{Me}_{2} \mathrm{SO}\right)$ suggest the ethylene spanners of the host widen the polar caps allowing
the methyls of the guest to more deeply penetrate this highly shielding region than do the methylene spanners of $\mathbf{7}$ and $\mathbf{8}$.

Intramolecular compacting of protons as in the guests $\mathrm{CBr}_{2}-$ $\mathrm{HCBr}_{2} \mathrm{H}$ and the methyls of $\mathrm{MeCOCMe}_{3}, \mathrm{Me}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{C}(\mathrm{OH}) \mathrm{Me}_{2}$, $\mathrm{Me}_{3} \mathrm{CPh}, \mathrm{PhCH}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{Me}, 1,2-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$, and $1,2-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ all provide $\Delta \delta$ values that range from 0.00 to 2.51 ppm . Methyl protons of guests containing unhindered aryl methyls such as $\mathrm{MePh}, 1,3-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{4}, 1,4-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$, and aryl acetyl guests such as $\mathrm{MeCOPh}, 2-\mathrm{MeCOC} 6 \mathrm{H}_{4} \mathrm{Me}, 2-\mathrm{MeCOC}_{6} \mathrm{H}_{4} \mathrm{Cl}, 2-\mathrm{MeCOC}_{6} \mathrm{H}_{4}-$ Br , and 2- $\mathrm{MeCOC}_{6} \mathrm{H}_{4} \mathrm{OMe}$ deeply penetrate the shielding polar caps to give $\Delta \delta$ values that range from 2.93 to 3.47 ppm . Aryl protons para to the substituent in monosubstituted benzenes as in guests $\mathrm{MePh}, \mathrm{Me}_{3} \mathrm{CPh}$, and MeCOPh also occupy the polar caps to provide $\Delta \delta$ values of 3.29 to 3.92 ppm . Other aryl $\Delta \delta$ values are scattered between 0.48 and 3.17 ppm , depending on their placements in both guest and host.

In CPK models the conformations of $\left(\mathrm{OCH}_{2} \mathrm{O}\right)_{4}$ and $\left(\mathrm{OCH}_{2}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{O}\right)_{4}$ spanners are pretty well fixed, but those of $\left(\mathrm{OCH}_{2}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{4}$ are fluxional. Examination of models that combine rigid \mathbf{M} or \mathbf{E} units with flexible \mathbf{P} units indicates the rigid units must impose shapes on the flexible units when the two kinds are coupled at their lips in the same hemicarcerand, as in PM, PE, and EM. Comparisons of $\Delta \delta$ values for guests incarcerated in different kinds of hosts support this supposition. Hosts EE and PE complexed with the same guest produce similar $\Delta \delta$ values (compare those of $\mathrm{Me}_{3} \mathrm{CPh}, \mathrm{MeCOPh}, 1,2-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}$, $4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}$, and coumarin in Table 2). Similarly hosts MM and $\mathbf{P M}$ (and even EM if the two sets of ${ }^{\text {a }} \mathrm{H}$ protons are averaged) complexed with $1,2,3-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{3}$ give similar $\Delta \delta$ values for the guest protons. These correlations also indicate that the \mathbf{P} unit in $45\left(\mathbf{P E} \odot \mathrm{Me}_{3} \mathrm{CPh}\right), 47(\mathbf{P E} \odot \mathrm{MeCOPh}), 50$ $\left(\mathbf{P E} \odot(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$, and $53\left(\mathrm{PM} \odot(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{3}\right)$ possess the bo$\mathbf{s u}$ or a like conformation. This conclusion was reached before the crystal structure of $\mathbf{5 2}\left(\mathbf{P E} \odot \mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)$ became available. Complexation-decomplexation probably occurs through the biso or equivalent conformation, whose hosts in models allow these guests to enter and depart their complexes easily.

Neither MM nor PP formed isolable complexes with coumarin or $1,2-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}$, but both $\mathbf{E E}$ and $\mathbf{P E}$ formed isolable complexes with each guest. The $\Delta \delta$ values of 34 (EE $\odot 1,2-$ $\left.(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$ and $\mathbf{5 0}\left(\mathrm{PE} \odot 1,2-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$ protons range from 1.97 ppm to 2.17 ppm , which suggests these guests largely occupy the equatorial region of the host. Unlike models with \mathbf{M} unit-dominated cavities, those with \mathbf{E} unit-dominated cavities possess equatorial dimensions large enough to accommodate simple ortho-disubstituted benzenes. The $\Delta \delta$ values of 38 (EE \odot coumarin) and 46 (PE \odot coumarin) guest protons range from 3.22 to 3.50 ppm , which indicates that they are located in the polar regions, with the long axes of host and guest roughly aligned.

The successful assembly of models of the five complexes of $1,2,3-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{3}$ depends on distribution of the guest's 1,3$\left(\mathrm{CH}_{3} \mathrm{O}\right)_{2}$ groups (${ }^{\mathrm{a}} \mathrm{H}$ of Table 2) into the two polar caps of the cavity, with the $2-\mathrm{CH}_{3} \mathrm{O}$ group being essentially coplanar with its attached aryl. That plane is oriented half way between coincidence with the polar and equatorial axes of the host (model examination). This general structure is consistent with the relatively high $\Delta \delta$ values of the ${ }^{a} \mathrm{H}$ protons that range from 4.29 ppm in $26\left(\mathbf{E M} \odot 1,2,3-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{3}\right)$ to 3.09 ppm in $\mathbf{5 1}$ $\left(\mathbf{P E} \odot 1,2,3-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{3}\right)$ and the relatively low $\Delta \delta$ values of the ArH protons (${ }^{\mathrm{c}} \mathrm{H}$ and ${ }^{\mathrm{d}} \mathrm{H}$, Table 2), which range from 0.47 to 1.96 ppm . The ${ }^{\mathrm{b}} \mathrm{H}$ protons of the central methoxyl vary only from $\Delta \delta=0.94$ to 1.01 ppm , which shows the hydrogens occupy the low-shielding equatorial regions of the cavities. Particularly striking is the fact that only the host with the
smallest cavity composed of two unlike hemispheres, EM, provides two different signals for its guest's ${ }^{\text {a }} \mathrm{H}$ protons, one at $\delta=-0.44$ (methyl inserted into the \mathbf{E} unit), and the second at $\delta=0.32 \mathrm{ppm}$ (methyl inserted into the \mathbf{M} unit) to give $\Delta \delta$ values of 4.29 and 3.53 ppm , respectively. The existence of these two signals indicates that the rate of equilibration of the two terminal methoxyl group protons of the guest between the two unlike environments in the host cavities is slow on the ${ }^{1} \mathrm{H}$ NMR time scale in CDCl_{3} at $25^{\circ} \mathrm{C}$. In contrast, $51(\mathbf{P E} \odot 1,2,3-$ $\left.(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{3}\right)$ exhibits an equilibrated signal at $\delta=0.76$ ($\Delta \delta$ $=3.09 \mathrm{ppm}$), consistent with the larger cavity of $\mathbf{P E}$ compared with that of $\mathbf{E M}$. Likewise at $25^{\circ} \mathrm{C}$ in CDCl_{3} only one set each for Me and MeO signals is observed in the spectrum of 52 ($\mathbf{P E} \odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}$), suggesting the diastereoisomers are equilibrating rapidly on the ${ }^{1} \mathrm{H}$ NMR time scale at this temperature.

The most easily identified and characteristic changes in signals of hosts $\mathbf{1 - 6}$ upon complexation are those due to the aryl ${ }^{\mathrm{x}} \mathrm{H}$ proton of the $1,3-\left(\mathrm{OCH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ bridges, which in models generally point toward the guest. The δ values in CDCl_{3} for ${ }^{\times} \mathrm{H}$ of the five free hosts available (uncomplexed PM was never obtained) became less shielded as the spanners became longer as follows: MM, $\delta=7.46 ; \mathbf{E M}, \delta=7.60 ; \mathbf{E E}, \delta=7.88 ; \mathbf{P E}$, $\delta=7.95$; and $\mathbf{P P}, \delta=8.02 \mathrm{ppm}$, the total spread in values equalling 0.56 ppm . Aside from those of $\mathbf{2 4}$ (MM $\odot 3,4,5-$ $\left.(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{OH}\right)$, the hosts' $\Delta \delta$ values for their complexes varied between -0.21 and 0.21 ppm . The only generalization extractable from the data of Table 2 about the latter is that those guests which most rigidly extend in three dimensions provide the largest magnitudes in $\Delta \delta$ values (either positive or negative). Examples are $19\left(\mathbf{M M} \odot \mathrm{MeCOCMe}_{3}\right)(\Delta \delta=-0.21), 21$ $\left(\mathbf{M M} \odot \mathrm{PhCMe}_{3}\right)(\Delta \delta=+0.21), \mathbf{2 6}\left(\mathbf{E M} \odot 1,2,3-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{3}\right)$ $(\Delta \delta=+0.20)$, and $36\left(\mathbf{E E} \odot 1,2,3-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{3}\right)(\Delta \delta=+0.19$ $\mathrm{ppm})$. Model examination of hosts $\mathbf{1} \mathbf{- 6}$ shows that in extremes, the aryl planes of the bridges can twist as much as 45° to either side of the symmetrical conformations shown in top views in Table 3. Given the larger variation in δ values among the hosts themselves $(0.56 \mathrm{ppm})$ than is observed in the spread of $\Delta \delta$ with the guest changes (0.42 ppm), it is obvious that the many cancelling effects of guest and host structures on their ${ }^{1} \mathrm{H}$ NMR spectra combine to confound further analysis.

Unlike any other hemicarceplex prepared to date, 22 $\left(\mathbf{M M} \odot \mathrm{Ph}_{2} \mathrm{O}\right)$ provides an ${ }^{1} \mathrm{H}$ NMR spectrum which indicates the guest does not rotate about any host axis rapidly on the NMR time scale. The awkward shape, rigidity, and large size $\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}\right)$ of this guest makes CPK models of $22\left(\mathrm{MM} \odot \mathrm{Ph}_{2} \mathrm{O}\right)$ difficult to assemble, and highly dissymmetric. The crowding of two phenyls and an oxygen into a noncomplementary inner phase provides the guest with little mobility, which modifies the magnetic environment of the host's proximate protons in a nonaveraged way, greatly complicating its spectrum. The eight $\mathrm{Ar}-\mathrm{H}$ protons of the cavitand hemispheres provide three different singlets (about 2:1:1 intensity), showing nonequivalence of magnetic fields in the polar regions of the shell. One fourproton singlet of the bridges' $\mathrm{OCH}_{2} \mathrm{Ar}$ occurs at 4.96 ppm , but the other 12 benzyl protons appear as a complex multiplet (δ $4.66-4.96 \mathrm{ppm}$), which also includes the eight methines. The spanner $\mathrm{OCH}_{2} \mathrm{O}$ signals which usually appear as doublets are multiplets $\left(\mathrm{OCH}_{2} \mathrm{O}\right.$ inner, $\delta 4.26,8 \mathrm{H}$ and $\mathrm{OCH}_{2} \mathrm{O}$ outer, $\delta 5.51$, 8 H), which indicates the two bowls have different magnetic environments.

Qualitative Decomplexation Rates: Comparisons of complexes of EE and PE. Because of the generally large $\Delta \delta(\mathrm{ppm})$ ${ }^{1} \mathrm{H}$ NMR values, order of magnitude comparisons of the halflives for decomplexation were easily made in CDCl_{3} at $25^{\circ} \mathrm{C}$.

The half-lives varied from extremes of a few minutes to months. For example $\mathrm{t}_{1 / 2} \approx 0.33 \mathrm{~h}$ for 47 (PE $\left.\odot \mathrm{MeCOPh}\right)$, and $\mathrm{t}_{1 / 2} \approx 48 \mathrm{~h}$ for $39(\mathbf{E E} \odot \mathrm{MeCOPh})$, so $47($ PE $\odot \mathrm{MeCOPh}) \gg$ 39 (EE $\odot \mathbf{M e C O P h}$) in decomplexation rate. Complexes $\mathbf{M M} \odot \mathrm{MeCOPh}$ and $\mathbf{P P} \odot \mathrm{MeCOPh}$ are undoubtedly unstable to isolation. Both $40\left(\mathbf{E E} \odot 2-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{COMe}\right)$ and 48 (PE®2$\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{COMe}$) are more kinetically stable than their corresponding complexes with MeCOPh , and $40\left(\mathbf{E E} \odot 2-\mathrm{MeC}_{6} \mathrm{H}_{4}-\right.$ $\mathrm{COMe})>48\left(\mathbf{P E} \odot 2-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{COMe}\right)$ in decomplexation rate. In contrast, $52\left(\mathbf{P E} \odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)>37\left(\mathbf{E E} \odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4}-\right.$ OMe) in decomplexation rate. For the planar guest, coumarin, 46 (PE®coumarin) > 38 (EE \odot coumarin) in decomplexation rate, since $\mathbf{P E}$ is much more conformationally flexible than EE. When the rate for decomplexation of differently 2 -substituted acetophenones of EE complexes are compared, 40 (EE®2$\left.\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{COMe}\right)>41\left(\mathbf{E E} \odot 2-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{COMe}\right)>42($ EE $\odot 2-$ $\left.\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{COMe}\right) \approx 43\left(\mathbf{E E} \odot 2-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{COMe}\right)$. Comparison of the rates for decomplexation of the isomeric xylenes provides the order, $29\left(\mathbf{E E} \odot 1,3-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right) \gg \mathbf{3 0}\left(\mathbf{E E} \odot 1,4-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$ $>28\left(\mathbf{E E} \odot 1,2-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$. Solutions in CDCl_{3} at $25^{\circ} \mathrm{C}$ of $\mathbf{E E}$ complexes with $\mathrm{Me}_{3} \mathrm{CPh}, 1,2-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}, 1,2,3-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{3}$, $2-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{Me}$, and of PE complexes with $\mathrm{Me}_{3} \mathrm{CPh}, 1,2$ $(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ and $1,2,3-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{3}$ are stable indefinitely.

These qualitative orders for rates of decomplexation when taken in sum provide the following overall generalizations: (1) The kinetic stability orders for hemicarceplexes whose hosts involve $1,3-\left(\mathrm{OCH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ bridges ($\mathbf{1 - 6}$) vary widely with changes in the spanners of the hosts as well as with changes in the shapes, sizes, and electronic character of their guests. With some guests, EE complexes are more kinetically stable than their PE counterparts, but with others, the opposite order is observed. (2) When guests reach $10-13$ heavy atoms in size, which are distributed substantially and rigidly in three dimensions (e.g., more than coumarin), their formable complexes with $\mathbf{1 - 6}$ are stable in CDCl_{3} at $25^{\circ} \mathrm{C}$. Examples of such guests are $\mathrm{Me}_{3} \mathrm{CPh}$ (complexes MM, EM, EE, PE, and PP), and 1,2,3$(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{3}$ (complexes MM, EM, EE, PE, and PM). 3) The complex with the largest guest is $\mathbf{2 2}\left(\mathbf{M M} \odot \mathrm{Ph}_{2} \mathrm{O}\right)$, whose guest contains 13 heavy atoms and 10 hydrogens. The increase in the multiplicity of both host and guest ${ }^{1} \mathrm{H}$ NMR signals of this complex indicates the guest cannot rotate rapidly on the NMR time scale around any of its host's axes at ambient temperature. Interestingly, MM also forms complexes stable to isolation with the smallest guests $\left(\mathrm{CBr}_{2} \mathrm{HCBr}_{2} \mathrm{H}, \mathrm{Me}_{3} \mathrm{CCOMe}\right.$, and $\mathrm{Me}_{2} \mathrm{C}$ $\left.(\mathrm{OH}) \mathrm{C}(\mathrm{OH}) \mathrm{Me}_{2}\right)$, attesting to the importance in obtaining stable complexes of the distribution of the guest's bulk in all three dimensions.

Summary. Forty one-to-one complexes involving nine hosts and 24 guests have been prepared and characterized. Most of them were prepared by heating host in the presence of large excesses of guest. The guests range in numbers of nonhydrogen atoms from four to 13 atoms. Crystal structures of 55 (EM $\left.\odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right), \mathbf{3 7}\left(\mathbf{E E} \odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)$, 52 (PE $\odot 4-$ $\left.\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)$, and $50\left(\mathbf{P E} \odot 1,2-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$ were determined. Values of $\Delta \delta$ (difference in chemical shift values of guest proton signals, free and incarcerated) correlate well with expectations based on molecular model examination guided by crystal structures. The \mathbf{P} bowls are conformationally mobile, but when bonded rim-to-rim with relatively rigid \mathbf{E} or \mathbf{M} bowls through $1,3-\left(\mathrm{OCH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ bridges, the \mathbf{P} bowls assume a bo-su conformation. Guests $\mathrm{Me}_{3} \mathrm{CPh}$ and $1,2,3-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{3}$ each formed complexes with five of $\mathbf{1}-\mathbf{6}$ hosts. High structural recognition was shown by $\mathbf{E E}$ and $\mathbf{P E}$ in the rates of complexing and decomplexing ortho-, meta- and para-isomers of disubstituted benzenes. Only the host with the narrowest cavity composed
of two unlike bowls $(\mathbf{E M})$ prevents the two distant Me groups of $1,2,3-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{3}$ from replacing one another rapidly at 25 ${ }^{\circ} \mathrm{C}$ on the ${ }^{1} \mathrm{H}$ NMR time scale in CDCl_{3}. The host with the narrowest cavity, MM, formed stable complexes with the largest $\left(\mathrm{Ph}_{2} \mathrm{O}\right)$ and smallest guest $\left(\mathrm{Br}_{2} \mathrm{CHCHBr} 2\right)$, pointing to the importance of shape in host-guest relationships. At ambient temperature, $\mathbf{2 2}\left(\mathbf{M M} \odot \mathrm{Ph}_{2} \mathrm{O}\right)$ is unique since its guest appears immobilized with respect to molecular rotations inside its host.

Experimental Section

General. Organic compounds used in complexation experiments were purchased from Aldrich Chemical Company unless otherwise noted and were of the highest purity available. All reactions were conducted under an atmosphere of argon, unless indicated otherwise. A Bruker ARX 500 MHz spectrometer was used to record ${ }^{1} \mathrm{H}$ NMR spectra. Spectra were taken in CDCl_{3} and were referenced to residual CHCl_{3} at 7.26 ppm . FAB MS were determined on a ZAB SE instrument with 3-nitrobenzyl alcohol (NOBA) as a matrix. Analytical and preparative thin-layer chromatography was performed on E. Merck glass-backed plates (silica gel $60, \mathrm{~F}_{254}, 0.25 \mathrm{~mm}$ and 0.5 mm thicknesses).
$23\left(\mathbf{M M} \odot \mathbf{1}, \mathbf{2}, \mathbf{3}-(\mathbf{M e O})_{3} \mathbf{C}_{6} \mathbf{H}_{3}\right)$. Procedure A. To a pyrex test tube equipped with an inert gas inlet was added $20 \mathrm{mg}(0.009 \mathrm{mmol})$ of $\mathbf{M M}$ and $2.0 \mathrm{~g}(11.9 \mathrm{mmol})$ of $1,2,3-(\mathrm{MeO})_{3} \mathrm{C}_{6} \mathrm{H}_{3}$. The mixture was heated at $160{ }^{\circ} \mathrm{C}$ for 2 days, cooled to $\sim 80^{\circ} \mathrm{C}$ and poured into 60 mL of MeOH . The solid was filtered, dried in vacuo, and purified by preparative TLC ($4: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane as eluent) to give 16 mg (74%) of 23: ${ }^{1} \mathrm{H}$ NMR $\delta-0.11\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 0.94(\mathrm{t}, J=7.1 \mathrm{~Hz}, 24 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.32-1.54\left(\mathrm{~m}, 48 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{3}\right), 2.20\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CHCH}_{2}\right), 2.85$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.26\left(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 8 \mathrm{H}\right.$, inner $\left.\mathrm{OCH}_{2} \mathrm{O}\right), 4.81(\mathrm{~m}, 24$ $\mathrm{H}, \mathrm{ArCH}_{2}$ and CH methine), 5.18 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$, guest $\mathrm{Ar} H$), $5.58\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 8 \mathrm{H}\right.$, outer $\left.\mathrm{OCH}_{2} \mathrm{O}\right), 6.43(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$, guest $\mathrm{Ar} H$), $6.92(\mathrm{~s}, 8 \mathrm{H}, \mathrm{Ar} H)$, and $7.18-7.34(\mathrm{~m}, 16 \mathrm{H}, \mathrm{Ar} H)$; MS FAB m/e 2339 (complex ${ }^{+}$, 100), m/e 2170 (MM, 15). Anal. Calcd for $\mathrm{C}_{136} \mathrm{H}_{152} \mathrm{O}_{24} \cdot \mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{3}$: C, 74.46; H, 7.07. Found: C, $74.58 ; \mathrm{H}, 6.93$.

31 (EE $\odot 1,2,4-\left(\mathrm{Me}_{3} \mathbf{C}_{6} \mathbf{H}_{3}\right)$. Procedure B. A mixture of 20 mg (0.009 mmol) of $\mathbf{E E}$ in 2 mL of 98% 1,2,4-(Me$)_{3} \mathrm{C}_{6} \mathrm{H}_{3}$ under argon was heated 3 days at $160^{\circ} \mathrm{C}$. The mixture was cooled to $\sim 80^{\circ} \mathrm{C}$ and poured into 60 mL of MeOH . The product was collected on a finesintered glass funnel and dried at 10^{-5} Torr $\left(25^{\circ} \mathrm{C}\right)$ for 18 h to give 17 $\mathrm{mg}(81 \%)$ of 31 as a white solid: ${ }^{1} \mathrm{H}$ NMR $\delta-1.31$ (s, 3 H , guest $\left.\mathrm{CH}_{3}\right),-1.08\left(\mathrm{~s}, 3 \mathrm{H}\right.$, guest $\left.\mathrm{CH}_{3}\right), 0.90\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 24 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $1.18-1.60\left(\mathrm{~m}, 51 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{3}\right.$, guest $\left.\mathrm{CH}_{3}\right), 2.05-2.22\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CHCH}_{2}\right)$, 3.52-3.60 (m, 16 H , inner $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.78-3.98(\mathrm{~m}, 16 \mathrm{H}$, outer $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 4.68 (s, 1 H , guest $\mathrm{Ar} H$), $5.06-5.20\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{ArCH}_{2}\right.$, CH methine), 5.75 (d, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}$, guest $\mathrm{Ar} H$), $6.88-7.30(\mathrm{~m}, 20$ $\mathrm{H}, \mathrm{Ar} H$), 7.78 (s, $4 \mathrm{H}, \mathrm{Ar} H$); MS FAB m/e 2404 (100), 2282 (60). Anal. Calcd for $\mathrm{C}_{144} \mathrm{H}_{168} \mathrm{O}_{24} \cdot \mathrm{C}_{9} \mathrm{H}_{12}$: C, 76.47; H, 7.55. Found: C, 76.72; H, 7.56.

A similar experiment involving $20 \mathrm{mg}(0.009 \mathrm{mmol})$ of $\mathbf{E E}$ and 2 mL of $98 \% 1,3,5-(\mathrm{Me})_{3} \mathrm{C}_{6} \mathrm{H}_{3}\left(150^{\circ} \mathrm{C}\right.$ for 3 days) gave $13 \mathrm{mg}(62 \%)$ of 31. The physical properties and ${ }^{1} \mathrm{H}$ NMR spectrum of this material were identical with the complex isolated from $\mathbf{E E}$ and $1,2,4-(\mathrm{Me})_{3} \mathrm{C}_{6} \mathrm{H}_{3}$.

38 (EE®Coumarin). Procedure C. A mixture of $20 \mathrm{mg}(0.009$ $\mathrm{mmol})$ of EE, $2 \mathrm{~g}(13.7 \mathrm{mmol})$ of coumarin, and 2 g of $\mathrm{Ph}_{2} \mathrm{O}$ was heated 4 days at $185^{\circ} \mathrm{C}$. The solution was cooled to $\sim 80^{\circ} \mathrm{C}$, diluted with 9:1 MeOH-CHCl 3 , filtered, and purified by preparative TLC ($4: 1$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane as eluent) to give $10 \mathrm{mg}(47 \%)$ of 38: ${ }^{1} \mathrm{H}$ NMR δ $0.90\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 24 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.18-1.56\left(\mathrm{~m}, 48 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{3}\right)$, 2.08-2.18 (m, $\left.16 \mathrm{H}, \mathrm{CHCH}_{2}\right), 2.92(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}$, guest vinyl H), 3.33-3.46 (m, 16 H , inner $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $3.77-3.88(\mathrm{~m}, 16 \mathrm{H}$, outer $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.93(\mathrm{~m}, 2 \mathrm{H}$, guest $\mathrm{Ar} H), 4.28(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}$, guest vinyl H), $5.08-5.22\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{ArCH}_{2}, \mathrm{CH}\right.$ methine), $6.49(\mathrm{~m}, 1$ H, guest ArH), $7.02-7.32$ (m, $20 \mathrm{H}, \mathrm{ArH}$), 7.98 (s, $4 \mathrm{H}, \mathrm{ArH}$); MS FAB m/e 2430 (60), 2282 (100). Anal. Calcd for $\mathrm{C}_{144} \mathrm{H}_{168} \mathrm{O}_{24}{ }^{\circ}$ $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{O}_{2}$: C, 75.65 ; H, 7.22. Found: C, 75.28; H, 7.24.
$41\left(\mathbf{E E} \odot 2-\mathrm{ClC}_{6} \mathbf{H}_{4} \mathbf{C O M e}\right)$. A mixture of $20 \mathrm{mg}(0.009 \mathrm{mmol})$ of EE and 2 mL of $97 \% 2-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{COMe}$ was heated 4 days at $150^{\circ} \mathrm{C}$. Application of procedure B gave $15 \mathrm{mg}(70 \%)$ of 41: ${ }^{1} \mathrm{H}$ NMR $\delta-0.69$ (s, $3 \mathrm{H}, \mathrm{COCH}_{3}$), $0.90\left(\mathrm{t}, J=7 \mathrm{~Hz}, 24 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.18-1.52(\mathrm{~m}$, $\left.48 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{3}\right), 2.07-2.18\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CHCH}_{2}\right), 3.46-3.60(\mathrm{~m}, 16 \mathrm{H}$,
inner $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $3.88-3.98\left(\mathrm{~m}, 16 \mathrm{H}\right.$, outer $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 4.42 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$, guest $\mathrm{Ar} H), 5.07-5.20\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{ArCH}_{2}, \mathrm{CH}\right.$ methine), 5.98 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, guest $\mathrm{Ar} H$), 6.33 (t, $J=7.4 \mathrm{~Hz}$, 1 H , guest $\mathrm{Ar} H), 7.02-7.28(\mathrm{~m}, 20 \mathrm{H}, \mathrm{ArH}), 7.84(\mathrm{~s}, 4 \mathrm{H}, \mathrm{Ar} H) ; \mathrm{MS}$ FAB m/e 2437 (100), 2282 (75). Anal. Calcd for $\mathrm{C}_{144} \mathrm{H}_{168} \mathrm{O}_{24} \cdot \mathrm{C}_{8} \mathrm{H}_{7}-$ ClO: C, 74.90; H, 7.24. Found: C, 74.66; H, 7.01.

A similar experiment with $20 \mathrm{mg}(0.009 \mathrm{mmol})$ of $\mathbf{E E}$ and 2 mL of $98 \% 4-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{COMe}\left(150{ }^{\circ} \mathrm{C}, 4\right.$ days) gave 14 mg of a white solid identified as a mixture of EE and 41 (by TLC and ${ }^{1} \mathrm{H}$ NMR). Integration of the singlet absorption in the m-xylyl bridge (7.84 ppm for $\mathbf{4 1}$ and 7.88 ppm for $\mathbf{E E}$) gave 55% of complex and 45% EE.

Reaction of $20 \mathrm{mg}(0.009 \mathrm{mmol})$ of $\mathbf{E E}$ and 2 mL of $98 \% 3-\mathrm{ClC}_{6} \mathrm{H}_{4}-$ COMe ($150{ }^{\circ} \mathrm{C}, 4$ days) gave 12 mg of a white solid. Two compounds were observed by TLC ($4: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane) which were identified as $\mathbf{E E}(\sim 60 \%)$ and $\mathbf{E E} \odot 3-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{COMe}$ by ${ }^{1} \mathrm{H}$ NMR and MS. The ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture exhibited a singlet at -1.0 ppm attributed to the MeCO of the complexed guest (note: the MeCO in 41 appears at -0.69 ppm) and the aryl singlet at 7.84 ppm is assigned to the m-xylyl bridges in the complex. The FAB MS of the mixture gave $m / e 2437$ (30) for $\mathbf{E E} \odot 3-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{COMe}$ in addition to $m / e 2282$ (100) for $\mathbf{E E}$.
$32\left(\mathbf{E E} \odot \mathbf{P h C H}(\mathbf{M e}) \mathbf{C H}_{2} \mathbf{M e}\right)$. A mixture of $20 \mathrm{mg}(0.009 \mathrm{mmol})$ of $\mathbf{E E}$ and 2 mL of $\mathrm{PhCH}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{Me}$ was heated 3 days at $160^{\circ} \mathrm{C}$. Application of procedure B gave $15 \mathrm{mg}(70 \%)$ of 32: ${ }^{1} \mathrm{H}$ NMR $\delta-0.87$ (s (br), $3 \mathrm{H}, \mathrm{ArCHCH}_{3}$ of guest), $0.81\left(\mathrm{t}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ of guest), $0.91\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 24 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.17-1.63(\mathrm{~m}, 50 \mathrm{H}$, $\left(\mathrm{CH}_{2}\right)_{3}, \mathrm{CH}_{2}$ of guest), $2.05-2.16\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CHCH}_{2}\right), 3.50-3.60(\mathrm{~m}$, 16 H , inner $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 3.85-3.98 (m, 16 H , outer $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $4.24(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}$, guest $\mathrm{Ar} H), 5.04-5.22\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{ArCH}_{2}, \mathrm{CH}\right.$ methine), $5.55(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}$, guest $\mathrm{Ar} H), 6.17(\mathrm{~d}, J=5.9 \mathrm{~Hz}$, 2 H , guest $\mathrm{Ar} H), 6.98-7.30(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ar} H), 7.93(\mathrm{~s}, 4 \mathrm{H}, \mathrm{Ar} H)$; MS FAB m/e 2404 (complex - $\mathrm{CH}_{3}, 35$), m/e 2282 (100). Anal. Calcd for $\mathrm{C}_{144} \mathrm{H}_{168} \mathrm{O}_{24} \cdot \mathrm{C}_{10} \mathrm{H}_{14} \cdot 3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 74.85 ; \mathrm{H}, 7.67$. Found: C, 74.43 ; H, 7.31 .
$\mathbf{3 3}$ (EE $\odot \mathbf{M e}_{3} \mathbf{C P h}$). The reaction of $\mathbf{E E}$ and $99 \% \mathrm{Me}_{3} \mathbf{C P h}$ (procedure B) gave free $\mathbf{E E}, \mathbf{3 2}\left(\mathbf{E E} \odot \mathrm{PhCH}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{Me}\right)$ and $\mathbf{3 3}$ in the relative amounts 55:30:15 ($150{ }^{\circ} \mathrm{C}$, 3 days) and 40:15:45 $\left(160{ }^{\circ} \mathrm{C}\right.$, 11 days), respectively. GC-MS analysis of $\mathrm{Me}_{3} \mathrm{CPh}$ indicated $\sim 2 \% \mathrm{PhCH}-$ (Me) $\mathrm{CH}_{2} \mathrm{Me}$ present as impurity which accounts for the formation of the isomeric complex. ${ }^{7}$

Preparations of $\mathbf{2 2}\left(\mathbf{M M} \odot \mathbf{P h}_{\mathbf{2}} \mathbf{O}\right)$. A mixture of $0.30 \mathrm{~g}(0.34 \mathrm{mmol})$ of tetrol $1 \mathbf{1 0}, 0.30 \mathrm{~g}(1.7 \mathrm{mmol})$ of $1,3-\left(\mathrm{ClCH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}, 4 \mathrm{~g}$ of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, 10 mL of $\mathrm{Ph}_{2} \mathrm{O}$ and 190 mL of N-methylpyrrolidinone was stirred at $65^{\circ} \mathrm{C}$ under argon for 24 h . A $0.3 \mathrm{~g}(1.7 \mathrm{mmol})$ additional portion of the dichloride was added and stirring was continued for 36 h . The solvent was evaporated under vacuum, the residue was partitioned between CHCl_{3} and 10% aqueous NaCl , and the CHCl_{3} layer was dried (MgSO_{4}), concentrated to $\sim 5 \mathrm{~mL}$ and $\mathrm{MeOH}(300 \mathrm{~mL})$ was added. The crude product that precipitated was collected, dissolved in 10 mL of CHCl_{3}, and flash chromatographed on 100 g of silica gel. The column was eluted with 7:3 (v) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to provide 130 mg of a 7:3 mixture (${ }^{1} \mathrm{H}$ NMR) of MM and 22. The ratio of the two products was determined by integrating the hydrogens of the inner and outer methylenes of the spanners and the singlet of the $\mathrm{Ar}^{-\mathrm{x}} H$ in the bridging 1,3-($\left.\mathrm{OCH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ units. These results provide calculated shell closure yields of $\sim 24 \%$ for $\mathbf{M M}$ and $\sim 10 \%$ for 22 . These compounds have the same R_{f} in a variety of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane mixtures on TLC. To separate the host from the complex, 40 mg of the mixture was dissolved in 2.0 g of $\mathrm{Ph}_{2} \mathrm{O}$ and 2.0 g of $\mathrm{Me}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{C}(\mathrm{OH}) \mathrm{Me}_{2}$, and the solution was heated at $150{ }^{\circ} \mathrm{C}$ for 2 days. The mixture was poured into 90 mL of MeOH , the precipitate was filtered and washed, and the solid mixture of $\mathbf{2 2}$ and $\mathbf{2 0}\left(\mathbf{M M} \odot \mathrm{Me}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{C}(\mathrm{OH}) \mathrm{Me}_{2}\right)$ was separated by preparative TLC ($70: 30 \mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane) to give 6 mg of 22 and 25 mg of $\mathbf{2 0}$, the former having the higher R_{f}.

When MM was heated in $\mathrm{Ph}_{2} \mathrm{O}$ at $180^{\circ} \mathrm{C}$ for 7 days, a mixture of 5% of $\mathbf{2 2}$ and 95% of $\mathbf{M M}$ was obtained, as identified by MS and ${ }^{1} \mathrm{H}$ NMR spectra. When MM and a $1: 1(\mathrm{w} / \mathrm{w})$ mixture of $\mathrm{Ph}_{2} \mathrm{O}$ and coumarin were heated at $165^{\circ} \mathrm{C}$ for 2 d , a 60% yield of a $3: 1$ mixture

[^2](${ }^{1} \mathrm{H}$ NMR analysis) of MM and 22 was isolated and identified by ${ }^{1} \mathrm{H}$ NMR and MS techniques.

Decomplexation of Complexes. Solutions of 4 mg of complex in 0.5 mL of CDCl_{3} were placed in NMR tubes and spectra were recorded on a Bruker ARX 500 MHz spectrometer at $25^{\circ} \mathrm{C}$ with periodic recording of spectra. Integration of the aryl singlet (m-xylyl bridging group of host) for free host and complex was used to follow the decomplexation. Using this method the half-life $\left(25^{\circ} \mathrm{C}\right)$ for decomplexation of $29\left(\mathbf{E E} \odot 1,3-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$ was $\sim 3 \mathrm{~h}$ and that of $\mathbf{3 0}(\mathbf{E E} \odot 1,4-$ $\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$) was 13 days. The decomplexation of $\mathbf{2 8}\left(\mathbf{E E} \odot 1,2-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$ was about 10% complete after 30 days.

Crystal Structures. General. The crystal structure of each of the four compounds $(\mathbf{3 7}, \mathbf{5 0}, \mathbf{5 2}$ and $\mathbf{5 5})$ belongs to the triclinic space group $\mathrm{P} \overline{1}$, and each host lies on a center of symmetry. There is some disorder in all four structures since, although host 2 (structure 37) is centrosymmetric, the other hosts and all the guests are not centrosymmetric. All structures were solved by direct methods. ${ }^{8 a}$ Final refinements (F^{2}) were performed with SHELXL-93. ${ }^{8 b}$ All non-hydrogen atoms were refined with isotropic displacement parameters. All hydrogen atoms were geometrically located and refined riding or in rigid groups with fixed C-H distances $(0.93-0.97 \AA)$. The displacement parameter for each H was fixed at $1.5(\mathrm{Me})$ or 1.2 (all other H$)$ times that of the attached C or O atom.

The crystal structure of $\mathbf{5 5}\left(\mathbf{E M} \odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right) \cdot 4\left(4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)$ (crystallized from $4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{Me}-\mathrm{PhNO}_{2}-\mathrm{EtOH}$, determined at 298 K), $a=16.864(6), b=18.652(7), c=16.034(6) \AA, \alpha=104.59(1)^{\circ}, \beta=$ $117.93(1)^{\circ}, \gamma=101.76(1)^{\circ}, V=3995 \AA^{3}, Z=1,10977$ unique reflections, $5630>2 \sigma(I)$, maximum $2 \theta=115^{\circ}, \mathrm{Cu} K_{\alpha}$ radiation, was refined to $R=0.16$. No decay in standard reflections was observed (68.5 h). One molecule of $4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}$ is located in the host cavity. The $4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}$ extends into one bowl with Me $0.90 \AA$ below the plane through the four bridge oxygens (plane a, see 56). The six ring guest atoms have been constrained to be planar and the normals to this plane and the plane through the four oxygen atoms form an angle of 88°.

The crystal structure of $\mathbf{3 7}\left(\mathbf{E E} \odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right) \cdot 4\left(4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)$ (crystallized from $4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}-\mathrm{PhNO}_{2}-\mathrm{EtOH}$, determined at 298 $\mathrm{K}), a=16.827(5) \AA, b=18.611(6) \AA, c=16.242(5) \AA, \alpha=104.08-$ $(1)^{\circ}, \beta=117.78(1)^{\circ}, \gamma=102.20(1)^{\circ}, V=4040 \AA^{3}, Z=1,11093$ unique reflections, $5865>2 \sigma(I)$, maximum $2 \theta=115^{\circ}, \mathrm{Cu} K_{\alpha}$ radiation,
(8) (a) $\operatorname{SHELX86}(\mathbf{5 5}, \mathbf{3 7}$, and 52); $\operatorname{SHELXS}-90$ (50): Sheldrick, G. M. Acta Crystallogr. 1990, A46, 467-473; (b) Sheldrick, G. M. SHELXL-93, 1996, in preparation.
was refined to $R=0.13$. An 18% decay in intensities of standard reflections was observed (69.1 h). One Me of the guest extends into one bowl with the C atom $0.90 \AA$ below the plane through the four bridge oxygens (plane a of 56). The six ring guest atoms have been constrained to be planar and the normals to this plane and the plane through the four oxygen atoms form an angle of 86°.

The crystal structure of $52\left(\mathbf{P E} \odot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}\right) \cdot 4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}$ (crystallized from $4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{OMe}-\mathrm{PhNO}_{2}-\mathrm{EtOH}$) was first attempted at $298 \mathrm{~K}, a=15.723(10) \AA, b=17.544(11) \AA, c=14.800(9) \AA, \alpha$ $=113.46(2)^{\circ}, \beta=94.81(2)^{\circ}, \gamma=94.91(2)^{\circ}, V=3700 \AA^{3}, Z=1$. The structure was solved, but the differences in the two bowls of the host could not be resolved. Accordingly data were collected for the same crystal at $175 \mathrm{~K}: a=15.488(11) \AA, b=17.349(5) \AA, c=14.550(6)$ $\AA, \alpha=113.66(3)^{\circ}, \beta=93.74(5)^{\circ}, \gamma=95.30(4)^{\circ}, V=3543 \AA^{3}, Z=$ 1,10538 unique reflections, $6188>2 \sigma(I)$, maximum $2 \theta=120^{\circ}, \mathrm{Cu} K_{\alpha}$ radiation, refined to $R=0.18$. A 7% decay in intensities of standard reflections was observed (188.11 h). The six ring guest atoms have been constrained to be planar and the normals to this plane and the plane through the four oxygen atoms (plane a of 56) form an angle of 96°. One Me of the guest penetrates the bowl of the host, with the C of Me $0.94 \AA$ below plane \mathbf{a}.

The crystal structure of $\mathbf{5 0}\left(\mathbf{P E} \odot 1,2-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right) \cdot 6\left(1,2-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$ (crystallized from 1,2-(MeO) ${ }_{2} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{PhNO}_{2}-\mathrm{EtOH}$, determined at 175 $\mathrm{K}), a=17.288(18) \AA, b=18.419(17) \AA, c=16.740(14) \AA, \alpha=$ $91.25(8)^{\circ}, \beta=117.04(6)^{\circ}, \gamma=69.95(7)^{\circ}, V=4402 \AA^{3}, Z=1,11951$ unique reflections, $9238>2 \sigma(I)$, maximum $2 \theta=120^{\circ}, \mathrm{Cu} K_{\alpha}$ radiation, was refined to $R=0.16$. A 5% decay in intensities of standard reflections was observed $(162.30 \mathrm{~h})$. The angle between the normal to the least-squares plane of the benzene ring of the disordered guest and the normal to the plane of the four bridge oxygen atoms is 89°, and one of the OMe methyl carbons penetrates the bowl to $0.56 \AA$ below plane a.

Acknowledgment. We warmly thank the U.S. Public Health Service for supporting grant GM-12640.

Supporting Information Available: Crystallographic data, atomic coordinates and displacement parameters, and bond lengths and bond angles for each of the four crystal structures have been deposited in electronic form. See any current masthead page for ordering information and Internet access instructions.
JA963379R

[^0]: ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, March 15, 1997.
 (1) Host-Guest Complexation, 68.
 (2) Helgeson, R. C.; Paek, K.; Knobler, C. B.; Maverick, E. F.; Cram, D. J. J. Am. Chem. Soc. 1996, 118, 5590-5604.
 (3) Robbins, T. A.; Knobler, C. B.; Bellew, D. R.; Cram, D. J. J. Am. Chem. Soc. 1994, 116, 111-122.
 (4) Cram, D. J.; Blanda, M. T.; Paek, K.; Knobler, C. B. J. Am. Chem. Soc. 1992, 114, 7765-7773.
 (5) Cram, D. J.; Cram, J. M. Container Molecules and Their Guests. Monographs in Supramolecular Chemistry; Stoddart, J. F., Ed.; The Royal Society of Chemistry: Thomas Graham House, Science Park, Cambridge, U.K. 1994; pp 131-216.

[^1]: east-squares plane.

[^2]: (7) Analysis of $\mathrm{Me}_{3} \mathrm{CPh}$ was performed on a Hewlett-Packard Model 5890 instrument. The authors thank Professor Joan S. Valentine and Ms. Diana Wertz for assistance in this measurement.

